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Abstract

Machine learning (ML) is increasingly being applied to a wide array of domains from search
engines to autonomous vehicles. These algorithms, however, are notoriously complex and
hard to verify. This work looks at the assumptions underlying machine learning algorithms
as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on
the specific challenges of verifying reinforcement learning algorithms. These are highlighted
using a specific example. Ultimately, we do not offer a solution to the complex problem of
ML verification, but point out possible approaches for verification and interesting research
opportunities.
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1 Introduction

Machine learning (ML) is a general term that encompasses a broad class of algorithms that
learn from data. This is useful in applications where the algorithm is required to adapt
to new situations while in operation, or when it would be too complicated to write the
functionality expressed by the algorithm by hand. With the rise of big data due to better
hardware and the internet, machine learning algorithms that can use this data have also
become more popular. They can be found in a wide range of applications from spam filters
to stock trading to computer vision, and the field is still growing. In the future machine
learning is predicted to guide us to a world of autonomy with ML-controlled cyber-physical
systems that will be able to replace drivers, pilots and more.

Employing ML in safety-critical systems [18, 26] that possess the potential to endanger
human life or the environment is quite a challenge. In highly regulated safety-critical do-
mains such as civil aviation, engineers usually adhere to guidelines such as ARP 4761 [34]
that prescribe processes that focus on ensuring the resulting system is safe. Conserva-
tive design and engineering practices are also used to ensure that the system behaves in a
predictable manner thus easing the task of verification and validation. In addition, safety-
critical systems are often restricted to operate in a predictable environment. Yet predictable
operating environments are not always possible and unforeseen environmental influences can
arise that overwhelm the capabilities of the automation. Consequently, safety-critical sys-
tems often depend on trained human operators to deal with such situations. If an algorithm
is replacing the human operator, it should be able to make decisions at least as safe as a
human would, even in unpredictable circumstances.

The core problem of software verification is to verify that a given system satisfies its
specification. Conventional verification-based techniques are based on extensive testing.
The weakness of solely basing verification on testing is that “program testing can be used to
show the presence of bugs, but never to show their absence” [10]. Increasingly, verification
techniques based on formal methods are gaining acceptance in industry. This report will
highlight the challenges to formally verifying ML based systems.

Existing research into methods for the assurance of ML based systems roughly fall into
two categories. The first approach is to establish rules for safe operation and to build
monitors that ensure these rules are not violated. For instance, an autonomous automobile
may have to obey a rule saying that it stay at least 10 meters from the vehicle in front
of them. Civil aircraft must maintain a vertical separation of 1000 feet and horizontal
separation of 5 nautical miles. It is not always possible to characterize such safe operational
criteria and consequently, the second approach to safety requires the verification that the
ML system itself satisfies some safety criteria. For instance, humans must often obey rules
that are intended to ensure safety such as “do not behave erratically” or “do not take
actions that are unexpected by other drivers”. One difficult challenge is how to give formal
expression of these safety properties for machine learning algorithms.

This report is organized as follows. Section 2 is a high-level overview of the field of ma-
chine learning and relevant definitions. Section 3 surveys the major classes of ML algorithms
and techniques. Section 4 looks at the assumptions involved in the engineering of cyber-
physical systems using machine learning. Verification applied to general machine learning
algorithms is discussed in Section 5. Following this, Section 6 is a more in-depth look at
reinforcement learning and applying verification to this more specific branch of machine
learning. Finally, verification of an example system is suggested to give concrete examples
of verification possibilities. Section 7 discusses related work and Section 8 concludes.
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2 Fundamental Concepts in Machine Learning

Machine learning denotes the capability of machines to learn programs from data without
being explicitly programmed by a human. Computing scientists working in ML develop
general purpose algorithms that given data from a particular problem domain will create
a new program to solve that specific problem. As an ML algorithm gets more data, it
learns more about what it is supposed to do and refines the program accordingly. An
implementation of a machine learning algorithm is referred to as a learner or agent. One
can think of a learner as a higher-order function that takes in data and returns a new
program based on the data it has seen. In general, all agents must establish and maintain
a representation, which is the way it stores its knowledge. The representation chosen for
a particular agent depends upon the learning algorithm employed. Among the commonly
used representations are hyperplanes and neural networks.

Training is the process of teaching an agent by showing it instances of data. Ideally, the
resulting program should be able to generalize to give correct results for inputs that were
not part of the training data. In supervised learning, this training data consists of known
input-output pairs where the output is referred to as label ; in unsupervised learning, just
input instances are considered; and in reinforcement learning, the training data is feedback
received from the environment. This feedback can come in the form of rewards, or their
negative counterparts: penalties. This feedback is also referred to as reinfocement of an
earlier decision the agent made.

A ML agent typically has an associated cost or reward function that quantifies the
desirable output of the learner. Sophisticated mathematical optimization methods such as
gradient descent are often used to guide the learning to yield an optimal outcome. In the
case of supervised learning, algorithms often minimize a cost function metric measuring the
distance between the result predicted by the training data and the result returned by the
ML program when generalizing based on new data. While learning a policy for behavior,
exploitation is the act of exploiting the best known action according to the currently learned
policy to get a high reward. Exploration is a purposely sub-optimal choice to try to find a
better, but currently unknown policy.

Training generally aims to reach convergence of a metric, such as accuracy or a cost
function, to a stable value as the algorithm sees more data. If the algorithm converges, that
indicates that showing the agent more data does not improve performance any longer.

Tasks where machine learning is commonly used include: classification where the goal is
to learn how to classify input data as member of a certain class; regression where the agent
learns a function mapping numeric input to numeric output; reinforcement learning where
the goal is to learn a policy that can decide on actions to take in a state.

5



3 Machine Learning Algorithms

Machine learning algorithms can be split into three main categories based on how they
learn:

• Supervised learning. The training data these algorithms are trained on consists of
combinations of input instances and output labels. The algorithm is then trained to
generalize a function mapping the inputs to desired outputs. These algorithms are
often used for classification [27] or regression.

• Unsupervised learning. The algorithm is given input without labels, and its task
is to find hidden structure and features in this data. Unsupervised learning is often
used for clustering or anomaly detection, or combined with supervised learning into
semi-supervised learning. Semi-supervised learning uses the hidden structure in data
as input for supervised learning, usually used in classification tasks such as image or
speech recognition [40].

• Reinforcement learning. A reinforcement learning algorithm usually learns a func-
tion mapping states to actions, maximizing a reward function for each state-action
pair. This learning is done by trial and error. The algorithm chooses an action to take
in a state because it is either the action with the highest expected reward (exploita-
tion) or because it is trying to learn something new (exploration). The result of the
chosen action, as measured in the environment, is used as reinforcement and updates
the algorithm’s expected reward for the action taken [23].

Machine learning distinguishes between offline and online learning. An algorithm learns
offline if it is trained during development. Online learning occurs after deployment of the
learner. Combinations are possible where a learner is first trained offline and then continues
to learn online. This gives a good starting point while keeping the ability to adapt to the
actual deployment environment. Supervised and unsupervised learning are usually trained
offline because of the large amount of data needed. Reinforcement learning commonly learns
online.

3.1 Training Data

What sets ML algorithms apart from classical algorithms is the data. Properties of classical
algorithms rely on the algorithm itself: they will not change based on the algorithm’s input.
Machine learning algorithms, on the other hand, derive some of their properties from their
training data. This is especially troublesome when trying to prove guarantees, since the
properties of the algorithm can change with each instance of input and the exact future
input is unknown.

3.2 Training Process

Machine learning is an iterative process. In the case of most ML algorithms, training data
is split up into a training set and a test set. Here the iteration begins. First, part of the
training set is fed to the algorithm to learn from. Next the algorithm is tested on the test set.
Statistics such as accuracy, total reward or total cost of the errors made can serve as a metric
for the quality of the algorithm. After testing, the algorithm is fed more data to learn from
and is then again evaluated on the test set. This process generally continues until the metrics
on the test set converge to a stable values. If the eventual metrics are not satisfactory, the
entire process can be repeated with modified data, or a different training/evaluation method
to try to optimize these metrics.
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3.3 Generalization

The goal of training a machine learning algorithm is to have it generalize a hypothesis
based on the examples it has seen. Remembering the training data is not hard, but the
algorithm should be able to apply learned knowledge to previously unseen data. To do
this generalization, data alone is not enough [12]. Without any assumptions outside of the
training data it is impossible to train a learner that performs better than random guessing.
This is known as the ”no free lunch” theorem [44] in machine learning. Many common
assumptions are discussed in a later section.

3.4 Overfitting

Overfitting happens when the training data and assumptions are not enough to reach a
generalization. In that case, it could happen that the algorithm performs very well on the
training data (because the algorithm remembers it), but poorly once presented with data
that was not in the training set. Overfitting can be aggravated by the presence of noise, like
the noise present on sensors of a cyber-physical system [12].
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4 Assumptions

When designing a system or requirements for a system, different assumptions are made
either explicitly or implicitly. A violation of these underlying assumptions could potentially
invalidate any analysis and verification done. To prevent unexpected violations, extra care
has to be taken during the development of the system to explicitly state all assumptions
made on the system, so situations in which it might behave unpredictably can be easily
recognized. This document breaks assumptions down into four categories.

4.1 Operating Environment Assumptions

Assumptions on the operating environment of a system often consider the physical envi-
ronment of the system. For example the presence and properties of other objects in the
system’s operating boundaries, or properties or constraints on the physical environment in
which the system operates.

4.2 Platform Assumptions

Platform assumptions are assumptions about properties and constraints of other compo-
nents in the system. Engineering with imperfect components has been well-explored in the
dependable computing field [26], since any cyber-physical system will have numerous com-
ponents that can fail in multiple different ways. Assumptions on these components could
be regarding the quality (fidelity) of their functioning, i.e. noise and accuracy on sensors, or
regarding partial or total breakdown of the component (a failure). Assumptions regarding
failures of components and their fidelity are discussed separately in more detail.

4.2.1 Failure Assumptions

Failure assumptions consider one or more system components failing. These assumptions
usually state the expected time until failure of a component. Ultimately, it might be best to
simply assume that system engineers implemented dependability as thoroughly as possible,
allowing for simplification of the assumptions on the platform regarding the ML system.
For example, if there are redundant sensors on board, it could be assumed the sensor data
is reliable from the software’s point of view. Dependability is a best effort solution, it is not
perfect and faces limitations from budgets in available space, cost or computing power.

4.2.2 Fidelity Assumptions

Traditional algorithms are usually engineered separately from their data. By this we mean
that although a traditional algorithm will have declarations of data types and may include
precondtions and assertions restricting the values that data can range, the algorithm does
not change based on data. For machine learning algorithms this is not the case. A ML
agent is defined by the data that it was trained on. If these (often very large) data sets
are obtained using the sensors of the system, the fidelity of these sensors can have a large
impact not only on the output of a single execution, but on the future performance of the
ML algorithm. More specifically, noisy input in the training data could affect not just one
output instance but all future output produced by the ML algorithm.

4.3 Assumptions on Data

The training data of a ML algorithm defines the algorithm’s functioning. Therefore reason-
ing about the data becomes more important and should be done with care. There are some
assumptions the developer should be aware of when working with training data [42]:
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4.3.1 Independent, Identically Distributed Samples

The most common underlying assumption about training data that holds for most ML
algorithms is the assumption that data samples are independent and identically distributed
(IID). This assumption is however always invalid to some degree since online data is rarely
identically distributed to the training data. The situation can be worse for multi-purpose
agents trained on a general data set considering a wide variety of situations, but deployed
in a very specific situation. Conversely this assumption is also broken when deploying an
agent in an environment that is (partially) missing from its training data.

The IID assumption can be formalized in the language of probability theory as follows.
The random variables tX1, . . . , Xnu are independent if the events A1, . . . , An generated by
them are independent

P pXi P Ai for each i P t1, . . . , nuq “ Πn
i“nP pXi P Aiq

and the Xi each come from the same distribution.

4.3.2 Proximity

Another assumption that often appears in machine learning is the notion that samples with
similar inputs also have similar outputs. That means that if the distance (according to a
metric of choice) between the inputs of two samples is small, then so is the distance between
the outputs. This assumption is not always true. A complete breakdown of this assumption
can lead to what is known as ’Anti-Learning’ where an agent can learn to systematically
perform worse than random guessing on the test data set [28].

A formal definition of proximity can be given as follows. Given inputs i and outputs o
and a learner f that takes input and transforms it to output fpinq “ on and assume there
is a Boolean function T that returns true if its arguments are ’close’ according to some
definition and false otherwise, then proximity is defied as T pia, ibq ùñ T pfpiaq, fpibqq.

4.3.3 Smoothness

Smoothness is closely related to the idea of proximity and assumes that the underlying model
has smooth transitions from one value to another. Without this assumption interpolation
or extrapolation make little sense due to the lack of knowledge on the space between two
values. Like proximity this assumption is often, but not always, true. Formally, a smooth
function is a function that has derivatives of all orders everywhere in its domain.

4.3.4 Adversarial Behavior

Adversarial behavior occurs when someone or something purposely tries to affect the algo-
rithm such that it makes mistakes. Cyber-physical systems are predicted to become increas-
ingly networked as they continue to develop, increasing risk with regard to malign attackers.
A disturbing example of adversarial behavior is the ability to analyze image classification
neural networks and use their internal structure to create a near-invisible transformation
from one image to another that drastically changes the classification [19]. DARPA has also
spent time researching safe cyber-physical systems in their HACMS program [8] to try to
reduce the vulnerability of cyber-physical systems to outside attacks using formal methods,
although not specifically considering machine learning.

4.4 Assumptions on the Algorithm

Designing a ML algorithm comes with some assumptions. The fact a machine learning
algorithm is used implies an assumption by itself: the desired functionality can be learned
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from data. Other than that it is assumed that the chosen algorithm and its structure are
able to accurately model the system to be learned. The developer might assume the chosen
cost or goal function is sufficient to get good behavior. Another assumption might be that
the algorithm does not get stuck in a local optimum but reaches an global optimum. These
assumptions are usually made based on observations of the system or measured data. Some
of these assumptions might not hold in the presence of sufficiently bad data.

4.5 Interacting Assumptions

Since all these assumptions consider the same system, they are not independent. Figure 1
illustrates the relationship among the dependencies while Table 1 shows how these assump-
tions depend on each other, where each row is a set of assumptions depending on assumptions
from the columns.

The way the different assumptions are related implies a hierarchy where the assumptions in
one layer can depend on assumptions of all of the layers below it. Theoretically this means
that a violated environment assumption could cause a cascading violation leading to an
assumption violation on the platform, eventually violating an assumption on the algorithm.

Figure 1. Assumption hierarchy
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Environmental
assumptions

Platform
assumptions

Data
assumptions

Algorithm
assumptions

Environmental
assumptions

ˆ

Platform
assumptions

Platform
assumptions can
be based on
assumptions on
the environment,
e.g. a sensor has a
95% accuracy at
temperatures
between x and y.

ˆ

Data
assumptions

The training data
is assumed to
adhere to the
assumptions and
constraints of the
environment.

The data might be
captured by the
platform sensors,
thus being affected
by any fidelity or
failure
assumptions.

ˆ

Algorithm
assumptions

The chosen
algorithm is
assumed to model
the environment of
the system well.

The algorithm
used assumes the
availability and
accuracy of inputs.

Properties of the
algorithm such as
convergence
depend on the data
it sees.

ˆ

Table 1. Assumption influence
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5 Towards Formal Verification of Machine Learning

Formal verification, mathematically proving that a program meets its specification, has
been an active subject of research in computer science for over half a century [11, 16, 21].
Most early work focused on manual proofs of functional correctness of algorithms, but
sophisticated automation to support program verification is now available. For instance,
tools such as Frama-C [7] and SPARK-Ada [2] automatically generate verification conditions
from a suitably annotated program and allow the user to complete the proof by applying
fully automated proof tools such as CVC4 [3] and Z3 [32] or interactive theorem provers such
as Coq [5] and PVS [36]. Model checking [6, 13] is an automated verification technique for
determining if a state machine model of the software satisfies a logical specification and if not
provides a counterexample. Although it has found many industrial uses, model checking is
limited to checking partial specifications, such as the unreachability of bad states, via state
space exploration. All conventional verification approaches assume that the algorithm being
verified is fixed, but ML programs change as the system learns. When the learning can be
done up front, say during development, and then frozen before deployment, conventional
approaches are applicable. Also, traditional verification approaches can be applied to proofs
of convergence of ML algorithms.

McIver and Morgan [31] have developed a refinement calculus for reasoning about prob-
abilistic programs in the style of Dijkstra and has successfully applied it to reasoning about
a range of programs such as cryptographic protocols and wireless protocols, but it has not
been applied to reasoning about ML algorithms. Probabilistic programming is an approach
to programming systems that help make decisions in the face of uncertainty. Given central-
ity of probabilistic reasoning to ML, probabilistic programming should be a natural medium
for programming ML programs. Specialized probabilistic programming languages are being
developed along with associated probabilistic semantics. There has been very little research
on the verification of probabilistic program, but the work of Rand and Zdancewic [38] on a
logic for probabilistic programs shows promise, but has not been applied to ML programs.

Probabilistic model checking is a recent approach to model checking targeting the mod-
eling and analysis of systems that exhibit probabilistic behavior [14]. Probabilistic model
checking has been applied to a probabilistic model learned from data using standard maxi-
mum likelihood approaches [17].

In most cases, it is either impractical or impossible to formally verify ML systems using
existing tools and techniques. When it is possible to formally specify criteria that would
constrain an evolving system, Runtime Verification (RV) [20,25,37], where monitors detect
and respond to property violations at runtime, may be the only option for ensuring that
ML programs do not harm people or behave erratically.

5.1 Specifications

The starting point for any formal verification effort is a mathematically rigorous specification
precisely stating the property that the software or system is to satisfy. Getting a correct
formal specification is often the most difficult aspect of applying formal methods to large
systems in industry. Due to their very nature, it is almost impossible to construct a formal
specification of ML programs. Liang [30] has argued that the a specification, albeit informal,
for an ML system might look like the following:

Input: Training data.
Output: Weight Vector and an estimated accuracy,

but it is unclear how to formalize such a specification.
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Rather than specifying an entire ML system, there are critical components of the ML
program such as the optimization program that could be formally verified using existing
formal verification techniques. While ensuring the correctness of such subtle algorithms is
beneficial, it is not sufficient unless there is a way to formally specify properties about the
dynamic behavior of the system as it learns and evolves.

5.2 Verification of offline learners

After an offline learning algorithm has finished training it will no longer change. From that
point onward the algorithm will use the optimal policy it has learned. This means that for
equal inputs, the system will give the same outputs, thus acting deterministically. Therefore
verification in absolute terms should be possible. This was done by Goodrich and Barron
Associates for their proposal to replace large lookup tables, used in aircraft fuel measurement
systems, with neural network [22]. Thrun’s Validity Interval Analysis [41] is an innovative
approach to extracting symbolic knowledge from a neural network in a provably correct
manner, but little work on this approach has been carried out.

5.3 Verification of online learners

Applying traditional static verification methods to online learners makes little sense as the
subject system will change as it learns, invalidating all verification done previously. This
means that for online learners verification has to be done at runtime.

Online verification is harder for some algorithmic approaches than it is for others. A rein-
forcement learning algorithm with discrete actions as output can be easily verified at runtime
using traditional formal methods, since to the verification there is no difference between a
learner or a classical system choosing actions. A supervised learning classifier, on the other
hand, is extremely difficult to verify at runtime, since at that time there is usually no base
truth available to the verification algorithm, so there is nothing to compare the output to.
An alternative would be to monitor for violations of the specified assumptions to ensure the
system is operating in the environment considered in its specification and training.

Another issue is that some properties are simply hard to formally define, because it is
not exactly known what this property is. Consider a requirement like ‘the agent should not
behave erratically’. Because of the inherent vagueness this requirement is hard to formalize.
Trying to make this requirement more specific might cause other (unwanted) behavior to
not be covered by a requirement any longer. Machine learning algorithms are known to find
solutions that humans would not consider [1], making it hard to specify non-vague require-
ments to preclude unexpected behaviors.

Some of the methods for offline verification or analysis seem to have the opportunity to be
applied in an online setting, such as identification of input influence proposed by Datta [9],
which could lead to more insight in the workings of ML algorithms. Research into increasing
the explainability of ML algorithms, which could potentially be used as a form of verifica-
tion, seems interesting but mostly unexplored. Dwork et al. have suggested a framework
for fairness [15] that is closer to traditional runtime verification where a framework is built
around the machine learning algorithm to evaluate and possibly correct its output.
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Table 2. Components of reinforcement learning algorithms.
Representation Evaluation Optimization technique
Discrete states & actions Total/Average reward Formally sound methods

Policies Speed of convergence Dynamic programming
State value-function Regret Gittins allocation indices
Q-functions and reward Accuracy Learning Automata

Generalization Convergence Ad-Hoc methods
Various function approximation techniques Greedy strategy

* Decision trees/neural networks/... Randomized strategy
Interval-based techniques

6 Verification of reinforcement learning

For the remainder of this document we will restrict the topic to the verification of rein-
forcement learning (RL) algorithms [23], as the field of machine learning is too complex to
consider generally.

Reinforcement learning seems to be the most transparent and best understood machine
learning category and has historically been used most in cyber-physical systems.

6.1 Reinforcement learning

As mentioned before, reinforcement learning (RL) algorithms learn through trial and error
by interacting with their environment. There is a large number of different reinforcement
learning algorithms, but at their core they can be broken down into three main building
blocks [23], as shown in Table 2. The representation is the way the algorithm stores its
knowledge. This can be in the form of full policies, a value-function for states or Q-functions
(the combination of states and actions) and associated rewards. These representations
work well for discrete state and action spaces, leading to a small discrete state space. For
very large or continuous state spaces these methods would require intractable amounts of
training effort, in this case the representation needs to be capable of generalization. This
can mean generalizing on input, actions, or both and can usually be done by adapting a
reinforcement learning algorithm to include function approximation. The evaluation is used
to compare different RL agents or different versions of the same agent during the learning
process. Optimization techniques determine how the algorithm learns and how to optimize
its representation based on some evaluation metric. The process of optimizing a RL agent is
also referred to as exploration. In an online setting pure exploration might not be desired,
so a trade-off has to be made between improving the algorithm or exploiting its current
knowledge.

6.2 Model-based vs. Model-Free Learning

An important distinction to make between RL algorithms is the distinction of model-based
learning versus model-free learning. In model-based learning, a model of the environment
and system response is available. This means the possible resulting states are known when
taking one of the possible actions from any state. This model will often be in the form of
a Markov Decision Process (MDP). Such a model consists of transitions from one state to
another through actions. Actions can have more than one resulting state associated with
it, each resulting state has a probability so that the sum of probabilities of states reachable
from an action equals 1.
In Model-free learning, no model of the environment and system response is known. There-
fore any action is possible in any state, and any action can lead to any other state. While

14



training a RL agent, a model of the environment can be learned at the same time. This
would mean the model of the environment and system response depends on the training data
instead of the other way around, but it does gives the opportunity to construct a reasonably
accurate model (given enough training) to use in verification.

6.3 Predictability/Exploration Conflict

An issue inherent to reinforcement learning is trading off safety versus exploration. To
find an optimal policy, an agent will often use exploration methods that sometimes choose
random actions: the ‘trials’ from the trial-and-error approach. From a safety standpoint a
system should act in a more or less predictable, non-erratic way. Limiting exploration to
prevent this unwanted behavior would make the system safer, but could limit the overall
learning performance severely.

6.4 What can be Verified

Looking at the verification of reinforcement learning it is useful to catalog the aspects of
these algorithms that could be verified. A distinction is made between aspects of the system
that can be verified offline and those that have to be verified at runtime.

6.4.1 Offline Verification

• State to action mappings.
In the case where the algorithm will do no further online learning and with a determin-
istic exploitation strategy, state-action mappings can be extracted from the learner,
allowing for verification of requirements in the form “From all states in this set, never
do this action”.

• Action sequences.
Since the algorithm creates a mapping of states to actions, the only way to verify
action sequences is to know the underlying model of the system. Without an environ-
ment model any state-action pair could lead to any other state, making all sequences
possible. The model is already available in model-based algorithms. In model-free
algorithms the model could be learned next to the value function. Assuming the en-
vironment model is in the form of a Markov decision process, requirements can be
verified in some probabilistic temporal logic specification. An example of a tool that
could do this verification is PRISM [29].

• Algorithm properties independent of data.
Proving properties on algorithms is not software verification in the traditional sense
of the word, but proofs are required to ensure the algorithm behaves as it should, at
least theoretically. An example of this could be a proof of convergence that guarantees
that the algorithm will converge over time, like Q-learning has. These proofs consider
arbitrary data so no concrete data is needed for the proof.

• Validating assumptions on training data.
Validating assumptions on training data is easier to do offline than it is online because
the entire data set is available. Regardless, some properties and assumptions are
simply difficult to verify. Independence, identical distribution and proximity are all
difficult to verify statistically. Other properties like skewness and variable ranges are
easier to verify.
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6.4.2 Runtime Verification

Many properties that can not be verified offline can be verified at runtime, although this
might not always be feasible with regards to computation time or resource efficiency. Instead
of verifying the entire specification, only the affected parts can be verified at runtime,
assuming that if the specification was verified at the start of learning, and each change is
deemed valid, then the specification is still valid after an arbitrary number of changes.

• State to action mappings.
Assuming this is verified often, only one or a small amount of states will have changed,
which can be verified the same way as for the state-action mappings verified offline.

• Action sequences.
This can be considered as the runtime verification of a temporal logic specification
without any knowledge on the underlying system, just observing the output actions
of the agent.

• Monitoring (violations of) assumptions.
Assumptions made on the environment or the platform can easily be checked at a
distinct moment in time, like verifying assumptions on one single instance of training
data. Other assumptions might be harder or even impossible to verify.

• Input instance in training data.
If an input instance can be shown not to be present in the training data, that is a good
indication that the algorithm is encountering unknown situations, which generally
should be avoided. The question how to check if an instance of data was present in
the input data is tricky however. This problem is related to anomaly detection in data
mining. This method is ill-suited for online learners since training data is not well
defined.

6.5 Example System

As an example of a more exact and robust specification of assumptions and requirements
regarding machine learning, a toy example is considered. The example agent is the software
of an automatic gearbox trained with model-free reinforcement learning. The controller
uses the vector rtspeedu, tRPM

500 u, gears as its state. The actions available to the controller
are shifting up, shifting down or staying in the current gear.

The algorithm used to implement this learner is basic Q-learning [43] with an ε-greedy
exploration strategy. It chooses the best known action with probability 1-ε, and a random
action with probability ε. The algorithm receives a big reward when it reaches a speed of
30 m{s. This reward is divided by the time it took to get there, teaching the algorithm
to accelerate to 30 as fast as possible. Small rewards are given based on the current speed
during the training to guide the learner in the right direction. If after 40 seconds the car is
still not going 30 a big penalty is given. If the gearbox performs an action that would break
the gearbox, like shifting down at high rpm, a high penalty is given too.

6.5.1 Assumptions

The assumptions placed on the system are explicitly listed. Each assumption is categorized
to be AE (Environment Assumption), AP (Platform Assumption), AA (Algorithm Assump-
tion) or AD (Data Assumption).
AE1: The gearbox is not used on slopes with a gradient of more than 20%.
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AE2: The controller is only used when the car moves forward, so speed ě 0.

AP1: The engine and gearbox are working as expected.
AP2: The engine can handle RPM between 1000 and 6000.
AP3: The sensor readings have a ˘5% accuracy.
AP4: The sensors are assumed not to fail (from a software perspective).

AA1: Since the algorithm has a formal convergence guarantee, it is assumed to converge.

AD1: The data is subject to the proximity assumption.
AD2: The data is subject to the smoothness assumption.
AD3: No adversarial forces are working against the algorithm.

6.5.2 Safety Requirements

R1: The gearbox controller does not shift down in first gear.
R2: The gearbox controller does not shift up in fifth gear.
R3: The gearbox controller does not cause the engine to go over 6000 RPM.
R4: The gearbox controller does not cause the engine to go under 1000 RPM in any gear
but first.
R5: The controller should not shift up or down immediately twice in a row.

R6: The gearbox controller should not shift too quickly.

R7: Convergence should be guaranteed.
R8: The rate of convergence should be bounded.

6.6 Proposed Verification Approach

Verification methods are proposed for the example system with the goal to verify all safety
requirements. These verification methods are again split up into offline and online verifica-
tion.

6.6.1 Offline Verification

R7 & R8 - Algorithm Properties

Properties like convergence rely on the algorithm used. General proofs of convergence are
possible on these algorithms, even though these guarantees might not work out in practice
[12] (which is why there is an assumption stating that it is assumed they will). These proofs
do not consider any data so they can be done offline.

6.6.2 Online Verification

R1 & R2 - State-Action Mappings

Inspect all possible actions from the current state or all states changed because of an up-
date. Considering deterministic action selection, verify the agent will not perform an illegal
action in the updated state. In the example, if the gear in the state is 1, verify no ShiftDown
actions will be performed. If the gear in the considered state is 5, verify no ShiftUp action
will be chosen.
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The drawback of this method as described is that it only works with deterministic ac-
tion selection. Eliminating random action choices limits the exploration of the learner.
Alternatively, actions chosen by the controller can be intercepted by the verification system.
Verifying if the action is illegal in the current state and forcing the algorithm to force a
new action allows the use of any action selection method, but greatly increases the coupling
between the subject system and the verification. This method results in a safer system since
it allows for active prevention (and not just detection) of illegal actions while minimizing
the restrictions on the exploration strategy.

R3 & R4 - Probabilistic Action Sequences

To verify an action based on its expected result, that result should be predictable before
the action is executed. This is not necessarily possible, as the results of actions on the envi-
ronment could be uncertain or even unknown depending on the presence of a (probabilistic)
model of the world. In the complete absence of a world model, one can be learned while the
algorithm is trained. Using this learned world model for verification relies heavily on the
assumption that the training environment is representative of the deployment environment.
Once a world model is found it can be used to verify slightly modified, probabilistic versions
of these requirements, i.e. the probability the gearbox causes the engine to go over 6000
RPM is ď 10´5.

R5 & R6 - Illegal Sequences

Requirements R5 and R6 can be rephrased more formally as illegal action sequences.
This would cause R5 to be become ‘The action sequences Up Ñ Up, Down Ñ Down,
UpÑ Down and DownÑ Up are illegal.’
Requirement R6 can be rewritten as ‘Action sequences tUp,Downu Ñ Nonek Ñ tUp,Downu
are illegal for any 0 ď k ă η where η is the minimum number of None-actions between two
shift actions.
These requirements can be specified in temporal logic and verified at runtime. Similar to
the verification of state-action mappings, the system can be made safer if the verification
algorithm is allowed to actively prevent certain actions from happening.

Validity of Environmental Assumptions

Environmental assumptions will often be easy to verify since usually they can easily be
measured. The considered assumptions AE1 and AE2 can simply be measured with an
accelerometer and speed sensor respectively. Since environmental assumptions form the
first layer of the assumption hierarchy, violation here can be important to catch as they can
affect a large part of the system. Violations of these assumptions can be an early indication
of unpredictable or unknown situations.

Validity of Platform Assumptions

Platform assumptions are generally hard to verify due to the difficulty in measuring them.
However, most of these assumptions are well-explored in the field of dependable and fault-
tolerant systems engineering. This makes it tempting to replace platform assumptions with
the assumption the system was engineered to be fault-tolerant. Due to limitations regarding
for example cost, space, or power drain, fault-tolerance might not be an option.
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Validity of Algorithm Assumptions

Assumptions on the learning algorithm could be verifiable, although this is a difficult subject.
For example, there is no straightforward way to measure convergence, and methods such as
measuring the total reward or total penalty over the last n runs can only give an estimate.
The downside to this estimate is that it might classify a change in reward related to a
change in the environment as diverging behavior, while in actuality it is just the algorithm
adapting to a new situation. Verification methods for algorithm assumptions depend on the
individual assumption, and for many assumptions it is not clear how to verify them.

Validity of Data Assumptions

Verifying some of the assumed statistical properties online is not trivial (such as verifying
independence), and the results will be running estimates as future data can not be predicted
and included. These properties are affected by sensor noise and could even change over time.
Although data assumptions are fundamental to machine learning, verifying them might only
be feasible in an offline setting.

Properties on individual input instances are easier to verify. Input instances can be
verified to adhere to certain assumed bounds on their variables. They can also be checked
for anomalies against a predefined data set defining the variable space in which the algorithm
is well-defined. Failure to pass these tests could indicate situations unknown to the agent,
causing possibly unwanted or unpredictable behavior.
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7 Related work

Recently there has been more interest in the topic of AI safety with events such as the
Workshop on Safety and Control for Artificial Intelligence (SafArtInt 2016) [35] organized
by the Office of Science and Technology Policy (OSTP) and Carnegie Mellon University.
This event shows there is a real concern towards safety, but it also considered a fairly
flexible definition of safety. The talk “On the Elusiveness of a Specification for AI” [30]
from the ”Algorithms Among Us” symposium early 2016 is an interesting presentation that
considers a more formal approach to safety and in particular specification of machine learning
algorithms. This talk also displays the tendency of the AI community to solve problems
using AI. This method can improve safety in AI systems, but it will not be able to give hard
guarantees. If AI verifies AI, at no point in this process is a specification verified although
one could argue that confidence in the safety is increased.

There is little known work on actual formal methods for machine learning algorithms.
An interesting example of a method to verify some specification on neural networks is from
1993 by Thrun [41]. This method propagates bounds on input variables through the network
to produce a bound on the output variable(s). This highlights an interesting way of looking
at neural networks, and also shows how verification methods seem limited to one or just a
few ML algorithms. A more recent paper [17] presents a method to include Probabilistic
Computation Tree Logic (PCTL) constraints into the learning process for ML algorithms
that can be represented as Markov Chains. The method proposed in this paper looks
promising, although there is still some lack of clarity with regard to the relation between
their modified data sets and real world data, and how that impacts performance and safety.
Very recent work by Katz et al. [24] suggests a method to extend SMT solvers, allowing for
the verification of constraints on deep neural networks. These constraints are a combination
of bounds on input variables in combination with bounds on output variables. This is a
huge step in the right direction, introducing a scalable method to verify constraints on large
neural networks.

Another approach to safety is increasing the transparency of machine learning algo-
rithms: their ability to explain decisions. If some of these black-box-like algorithms can
produce an explanation of their decisions, that could lead to interesting properties to mon-
itor on these algorithms. Examples of this is the work done by Datta et al. [9] and Dwork
et al. [15] on the fairness of classifiers, as well as similar work done by Ribeiro et al. [39]
on a method of explaining the decisions by showing the parts of the input that contributed
most to the final decision. Possible runtime verification could involve looking at these ex-
planations.

Lastly the connection between the problem considered in this paper and the field of
cyber-physical systems should be mentioned. Since most safety-critical machine learning
applications will be cyber-physical systems, it is interesting to see how the CPS field specifies
requirements in the face of non-deterministic environments. Recent work suggests using
models to provide a more formal specification method for requirements [33], as well as
suggesting frameworks defining strict verifiable contracts on individual components to make
overall verification of a composition of components easier [4].
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8 Conclusion

There is no one-size-fits-all solution to the verification of machine learning algorithms.
Different domains and different algorithms allow for different verification methods. Although
not complete, the methods mentioned in this document are a first step towards verification
and eventually adoption of machine learning in autonomous cyber-physical systems.

The applications where machine learning is used most in practice are not safety-critical.
This seems to have led to a neglect of requirements engineering in the AI community. For
machine learning components to be accepted by regulatory agencies this will have to change,
and the AI community will have to engage the safety community in research to enable the
creation safety cases for ML based safety-critical systems.

This paper has shown a path – at least for reinforcement learning – to specify and verify
safety requirements on parts of machine learning algorithms. We believe it is possible to
combine knowledge from the domains of formal methods, dependable systems engineering,
and artificial intelligence to develop new formal methods that can create more complete
specifications and verification of machine learning algorithms. For now this research area
seems mostly unexplored and full of opportunities.
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