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[Abstract] This paper presents a study on satellite digital twins (SDT) focusing on the operational 

and maintenance phase of its life cycle, which provides model-based data monitoring, engineering 

analysis, conditional maintenance, and high-fidelity simulations. SDTs are integrated into ground 

systems and leverage the existing infrastructure in space missions to connect and synchronize with 

physical satellites via ground systems, which include satellite telemetry from physical satellites and 

commands from ground systems. The hierarchical component architecture is proposed for SDTs to 

address scalability, extensibility, and reusability requirements. The component architecture at the 

subsystem level comprises subsystem digital twins connected with a message bus for virtual 

operations, and a data training process has the component architecture at the mnemonic level for 

periodical recalibrating data models. The timed finite state machine (TSFM) framework is 

presented for satellite operations involving operational events with satellite telemetry and 

command data. A link table associating satellite state profiles with event triggers provides the 

formalism for more proactive and dynamic monitoring and model-based high-fidelity simulation. 

The highly diverse data types and large data volumes for satellite telemetry require flexibility in 

selecting data models to match datasets with different complexity in data patterns and innovative 

data training approaches to meet efficiency, accuracy, and robustness for data training in real-time 

or near real-time environments. Creating state profiles for operational events and establishing the 

link table are critical parts of the data training process in SDTs for data monitoring and 

simulations, in addition to recalibrating data models.  STDs define an extended telemetry database 

with a data training algorithm and training attributes for each mnemonic. Operations for 

recalibrating data models in SDTs are driven by an extended telemetry database for efficiency, 

accuracy, and rapid deployment of SDTs to new missions. 

I. Introduction 

 digital twin (DT) [1] is a set of virtual information constructs that mimics the structure, context, and behavior 

of a natural, engineered, or social system (or system-of-systems), is dynamically recalibrated with data from its 

physical twin, has a predictive capability, and informs decisions that realize value. A DT and its physical asset 

form a feedback loop that enables recalibrations of data models to be adaptive to the current state in its physical 

system and optimal decision support based on predictions of data models. It encompasses the entire life cycle of its 

physical assets to enhance system design and manufacturing effectiveness and efficiency and to optimize system 

operations. DT data models provide diagnostic and predictive analytics for optimal decision support, model-based 

dynamic monitoring, and high-fidelity simulations in design and manufacturing. The DT concept was introduced in 

2002[2] and initially proposed [3] in the aerospace industry. However, no significant progress was made on DT 

development until recent years with the development of the Internet of Things (IoT), enabling connectivity and 

synchronization between sensors in a physical system and its virtual representation, and the advances in AI and 

machine learning(ML) algorithms for model development and recalibration. DTs have become a disruptive 

technology that offers a platform for applying AI/ML in dynamic systems in various domains. There has been 

growing interest in research and development in many fields, including healthcare[4,5], agriculture[6], aerospace 

engineering[7], urban planning and development[8], and Earth science[9,10]. DTs have become an enabling 

technology for Industry 4.0[11,12].  

A satellite DT (SDT) is a virtual representation of a satellite. The existing infrastructure in space missions provides 

the connectivity between an SDT and its physical satellite via ground systems since all satellites in space missions 

send telemetry data for health, safety, and operation status to ground systems for monitoring and engineering 

analysis. SDTs are integrated into satellite ground systems and synchronized with physical satellites for health and 
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safety telemetry, satellite commands, and other operational data. They provide model-based data monitoring, 

engineering analysis, conditional-based maintenance, and simulation functionalities. The diagnostic and predictive 

analytics in SDT’s data models represent a paradigm shift from static and statistical monitoring and analysis to 

model-based dynamic monitoring, high-fidelity simulations, and automated engineering analysis. This leads to 

reduced risk, optimized operations, and enhanced mission resiliency.  

While the SDT approach brings considerable benefits and promises to reduce costs and improve operational 

efficiency, there are also significant challenges in developing an SDT.  An SDT must have a well-defined 

architecture that provides virtual operations mirroring the actual operations in its physical twin and periodical data 

training for recalibrating data models with the latest satellite data. The reference architecture must be reusable, 

scalable, and extensible to allow rapid deployment into new missions with different characteristics. Highly diverse 

satellite datasets bring considerable challenges to the data training of SDT data models in a real-time or near real-

time operational environment, and telemetry datasets used as inputs for the data training generally contain outliers 

that distort data training outputs. The SDT data training requires efficiency, accuracy, and robustness because of 

thousands to tens of thousands in a single mission. Anomalies in satellite operations cause unexpected data pattern 

changes in satellite telemetry datasets. However, operational events, such as orbit maneuvers, result in data pattern 

changes in multiple mnemonics because of interactions among satellite subsystems. The challenge for SDTs in data 

monitoring and engineering analysis is to differentiate data pattern changes in operational events from those in 

anomalies. The recent development of machine learning (ML) applications to monitor satellite health and 

safety[13,14,15] provides an innovative approach to developing high-fidelity data models essential for an SDT. 

Anomalies are separated from operational events with event profiles, an ML representation to characterize 

operational events and anomalies.  However, the SDT approach significantly improves data monitoring and 

engineering analysis compared to the existing ML approach. The fusion of telemetry data, satellite commands, and 

other operational data in SDTs enables the association of event profiles and satellite commands, creating true 

situational awareness. It enhances its ability to detect anomalies, as the existing ML approach only focuses on data-

driven models. The data training in SDTs requires the generation of event profiles in addition to recalibrating data 

models, which increases the complexity of data training operations. 

This paper studies SDT reference architecture, data model development and recalibration, data monitoring, and 

simulations. A hierarchical component reference architecture will be presented in Section 2 to offer virtual 

operations for satellite simulations, data training for recalibrating data models, and data monitoring for anomaly 

detections and ML-based engineering analysis, which provides scalability, extensibility, and reusability. The 

development of high-fidelity data models will be discussed in Section 3. Section 4 presents the TFSM approach for 

satellite operations with operational events with satellite telemetry and command data, establishing state profiles in 

the TFSM.  The link table that associates state profiles with event triggers is presented in the TFSM, which provides 

event-based anomaly detections and satellite simulations. Section 5 shows the data training process in an SDT, 

which recalibrates data models and generates the link table. Section 6 discusses data monitoring and satellite 

simulations within the TFSM framework with satellite directives and telemetry data fusion. The TFSM connects 

satellite commands with state profiles for operational events, which leads to proactive data monitoring and model-

based high-fidelity simulations. Finally, Section 7 presents the summary and outlook.  

II. The SDT Reference Architecture 

An SDT is synchronized with its physical satellite through a ground system to receive satellite telemetry from its 

physical satellite and satellite commands from its ground system for data model creation and recalibrations, dynamic 

monitoring, long-term behavior predictions, and simulations for different operation scenarios. SDTs send the 

telemetry generated from simulations back to their ground system and report physical satellites' health and safety 

status during dynamic data monitoring to engineers so they can take appropriate actions. An SDT should have three 

main data processing processes: data model creation and recalibration through data training, dynamic data 

monitoring and engineer analysis, and a virtual operation process to reproduce functionalities of physical twins 

through simulations. An SDT architecture must address re-usability, scalability, extensibility[16], and rapid 

deployment into a new mission with different functionalities and orbit characteristics. Since an SDT needs to operate 

in a real-time or near-real-time environment, the operation efficiency of model recalibrations, analysis, and 

monitoring is a challenge that must be addressed for processing thousands to tens of thousands of telemetry datasets 

in a mission. 

To develop a reference SDT architecture that meets re-usability, scalability, and extensibility requirements, one 

needs to separate the system components common to all missions from mission-specific components. A satellite is a 
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Figure 2 SDT Reference Architecture 

complex, dynamic, hierarchical system with many interacting components. Figure 1 shows a hierarchical view of a 

satellite and its subsystems, which include subsystems common to all missions, such as communication (COM), 

command and data handling (CDH), guidance and control (GNC), power, propulsions, and thermal subsystems. The 

GNC subsystem that manages the navigation and attitude of a satellite has reaction wheel, gyro, star-tracker, and 

ephemeris systems. A satellite also consists of mission-specific payloads, such as remote sensing instruments. Each 

subsystem in a satellite has a well-defined functionality. For example, the COM subsystem manages 

communications between a satellite and a ground system, which sends the instrument and health safety telemetry 

data to the ground system and receives directives from the ground systems.  

Figure 1 A hierarchical view of a satellite and its subsystems. 

The hierarchical view of a satellite shows that it is possible to define a reusable and extensible SDT architecture 

since most subsystems in all missions have the same functionality, and the different payloads in missions lead to 

differences in mission functionalities, such as the remote sensing or the communication satellites.  Thus, instead of 

developing an SDT for a satellite in a specific mission, the reference architecture should be hierarchical and consist 

of digital twins of subsystems. A DT with well-defined functionality represents each subsystem in a satellite, 

ensuring that the architecture of an SDT is modular, extensible, and reusable since digital twins for common 

subsystems, such as COM, CDH, and GNC, are generally reusable in most missions. The reference architecture 

should also address interactions among subsystem 

DTs. For example, the thruster firing in propulsion 

subsystems leads to state changes in the GNC and 

temperature changes in the thermal subsystems. 

Figure 2 shows a hierarchical component 

architecture for an STD. The scalability, 

extensibility, and reusability requirements are 

addressed in two hierarchical component levels: 

the subsystem level for virtual operations and the 

mnemonic level for data training and monitoring 

processes. The reference architecture consists of a 

DT I/O interface with ground systems and a 

collection of subsystem DTs connected to the 

system bus and data training and monitoring processes. 

The DT I/O process receives telemetry data from its physical satellite via a ground system and the same set of 

satellite commands from ground systems as those sent to its physical satellite. It sends the telemetry data in 

simulations back to ground systems. Thus, telemetry commutation and decommutation are required in satellite 

simulations as a part of the DT I/O process.  The data training and monitoring process receives its satellite's current 

and historical telemetry data to perform data training for recalibrating data models in each DT. It monitors incoming 

telemetry datasets for potential anomalies and performs the model-based engineering analysis of data training and 

monitoring outputs to generate operational status for its physical twin. The physical twin’s operation status and the 

model-based engineering analysis results are output to a client software for display to engineers, which is not part of 

the architecture in Fig. 2.   

The architecture, the operation concept, and the innovative techniques for the data training process have been 

developed in the ML approach in satellite health and safety monitoring[15], which can be adopted in the SDT data 

training process to create and recalibrate data models. The data training process implements a component 

architecture at the mnemonic level in which data models for satellite datasets are implemented as plugins and play 

algorithm components. The data training for model recalibrations is performed periodically so that data models are 
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Figure 3. Numerical Data Models for Satellite 

Datasets 

adaptive to changing patterns in telemetry datasets. The operations for the data training are defined in an extended 

telemetry database (ETD), which extends the native telemetry database for telemetry commutation/decommutation 

in a space mission to include data model definition and attributes needed for data training and monitoring for each 

mnemonic. Because satellite telemetry datasets are highly diverse in data pattern complexities, some need statistical 

evaluation during the data training period, while others need sophisticated ML algorithms, such as neural networks. 

The flexibility in selecting a particular data model for a mnemonic based on its data pattern complexity offered in an 

EDT is critical to addressing efficiency and accuracy requirements. The operation concept for data training in 

operational environments implements an incremental data training concept to provide efficiency in data training 

operations. The data training operation driven by an EDT offers scalability and flexibility and enables rapid 

deployment into new missions.  

The virtual operation process performs model-based high-fidelity simulations for alternative operational scenarios in 

satellite operations, which offers decision support in satellite operations. The virtual operation process receives 

satellite directives to perform appropriate operations and sends telemetry data generated by data models back to 

engineers. The reference architecture defines a standard interface between subsystem DTs and the system bus. The 

interactions among subsystems in the reference architecture are defined as request and response messages through 

the system bus. Each subsystem DT also generates health and safety telemetry messages.  The CDH subsystem 

receives the status message from each subsystem to generate the health and safety telemetry and send them to the 

COM system. Therefore, the reference architecture requires the interface standard and the message standard, which 

a similar approach has been implemented in the ground system[17], enabling the rapid integration of ground system 

components from different vendors and developing analysis and automation tools to increase automation in satellite 

operations[18].  

Each subsystem DT has at least three essential components: an interface component, a functional unit, and a virtual 

sensor unit that generates telemetry data for operation and health status. The interface unit connects a subsystem DT 

to the system bus for receiving and publishing output data and messages. The functional unit receives the input from 

the interface unit and performs the subsystem-specific operations and data processing. The virtual sensor unit 

provides health and safety telemetry and is represented by a set of data models for the corresponding telemetry. The 

data training and monitoring layer generates and recalibrates data models for virtual sensor units. Although the data 

processing and operation in a functional unit are subsystem-specific, the TFSM provides a general approach to 

describe data processing operations in a functional unit, which will be discussed in Section 4. 

III. SDT Data Models 

The main challenge for developing data models in an SDT is 

the diverse data types in satellite datasets, leading to different 

types of data models in an SDT. Figure 3 shows the data 

models for satellite datasets, including the rule-based, physics-

based, data-driven, and hybrid models. Satellite datasets can be 

classified into discrete and continuous categories. Discrete 

datasets are generally static and represent system operation 

status, such as a subsystem's on or off status. Operational 

events or anomalies trigger changes in discrete datasets and are 

generally defined by rule-based models. An operational event 

or an anomaly generally causes data pattern changes in 

multiple datasets due to interactions among subsystems in a 

satellite. Changes in discrete datasets generally correlate with 

pattern changes in continuous datasets, which is essential in 

profiling operational events or characterizing anomalies. 

Discrete datasets in satellite telemetry are represented by 

integers, which can be translated into string values defined in 

satellite telemetry databases. Rule-based models can be 

established through the learning (or data training) of historical data, in which discrete datasets are treated as a special 

class of algorithm components in the data training process. The discrete datasets can be written in the form of a 

time-dependent function: 

𝑞𝑗
𝑑(𝑡) = 𝑞𝑗

𝑑(𝑡0) + ∑ 𝛿𝑗
𝑘(𝑡𝑘)𝑘                                                           (1) 
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where 𝑞𝑗
𝑑(𝑡0) is the initial value of discrete datasets at the start of data training or monitoring periods. The quantity 

𝛿𝑗
𝑘(𝑡𝑘) in Eq. 1 is an integer representing the change value at the time 𝑡𝑘, and needs to correlate with an event 

trigger to establish the rule model. The detailed discussion on creating the rule models from Eq. 1 is presented in 

Section 5. 

The continuous datasets are generally time-dependent and represented by physics-based or data-driven models. 

Examples of satellite telemetry datasets with physics-based models are satellite positions, velocities, and attitudes 

derived from Newtonian classical mechanics and astronomy. High-fidelity data models for satellite orbital dynamics 

are available[19] for simulation purposes and can be integrated with SDTs. The data-driven models for the 

continuous datasets are time-dependent and noisy and are generally obtained through statistical analysis, data 

analytics, or data training. A common framework has been developed for data-driven models[13]; a data-driven 

model for a dataset {𝑑𝑗(𝑡)} is represented by a time-dependent trend consisting of a time-dependent function 

𝑓𝑗(𝑡 − 𝑡0)  and a standard deviation 𝜎𝑗 expressed as  

   𝜎𝑗 = √1

𝑁
∑ (𝑑𝑗(𝑡𝑖) − 𝑓𝑗(𝑡𝑖 − 𝑡0))

2
𝑁
𝑖=1                                                      (2) 

representing its noise level, where 𝑡0 is the reference time. The time-dependent trend {𝑓𝑗(𝑡 − 𝑡0), 𝜎𝑗} is obtained 

through data-training by introducing a parameter set {𝑊} so that 

𝑎𝑟𝑔𝑚𝑖𝑛𝑊 ∑
1

2
(𝑑𝑗(𝑡𝑖) − 𝑓𝑗(𝑡𝑖 − 𝑡0, 𝑊))

2

𝑖                                                (3) 

assuming the Gaussian probability distributions for noisy telemetry datasets. Since data patterns in satellite datasets 

are highly diverse, data models for some datasets could be just statistical collections over the data training period, 

and data models for others could be very complex and require sophisticated ML algorithms. The flexibility in 

matching datasets with specific patterns with specific models is necessary for data training in an SDT in a real-time 

and near real-time environment that requires efficiency, accuracy, and robustness. Thus, it is essential to maintain a 

collection of data models covering most telemetry datasets with different complexities in data patterns within the 

component architecture for the data training process described in Section 2.  

Data-driven models for satellite datasets consist of short- and long-term data trends driven by two competing 

dynamics: the satellite orbiting around Earth provides the short-term orbital patterns, and the satellite/Earth orbiting 

around the Sun generates seasonal or yearly periodical patterns. The data training process provides integrated short- 

and long-term data training. The inputs to the data training of long-term trends are generated from the short-term 

training, including standard deviations defined in Eq. 2 and aggregated statistical values of maximum, minimum, 

and mean per orbital period. The data training for short-term trends is performed daily or in each orbital period, 

while the training for long-term trends is conducted weekly or monthly. 

Hybrid models combine rule-based, physics-based, and data-driven models. The relationship model is an example of 

a hybrid model in which the values of one dataset are determined simultaneously by the values of another dataset. 

The relationship between telemetry datasets is determined by underlying physics, while unknown parameters in 

relationships can be obtained from the data training of historical data. An example of hybrid models is the current 

𝑓𝐼(𝑡) and the voltage 𝑓𝑉(𝑡) in a satellite battery subsystem determined by its charge state 𝑓𝐶(𝑡): 

𝑓𝐼(𝑡) = 𝛼𝑐
𝐼 𝜕𝑓𝑐(𝑡)

𝜕𝑡
                                                                          (4) 

𝑓𝑉(𝑡) = 𝛼𝑐
𝑉𝑓𝐶(𝑡).                                                                        (5) 

Eqs. 4 and 5 are established with the underlying physics, and the coefficients {𝛼𝐶
𝐼 , 𝛼𝐶

𝑉} in Eqs. 4 and 5 are 

determined with data training from actual telemetry data. Our study shows many datasets in the satellite power and 

battery systems determined by Eqs. 4 and 5[14], which provide very high-fidelity data models. Further studies are 

needed for other relationship models in satellite telemetry. 

IV. The Timed Finite State Machine for SDT 

Satellite operations are not static and involve operational events and mission-specific payload activities.  Examples 

of operational events are orbital maneuvers or momentum dumps initiated with satellite commands.  Another 

example is the eclipse event, triggered by a Geosynchronous satellite moving behind Earth and leading to changes in 

power and thermal subsystems. These operational events could last a few minutes to hours before returning to 
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normal operations, and satellite telemetry datasets during operational events have different patterns from those in 

normal operations. Thus, data models for operational events and normal operation are essential in an SDT for 

accurate and robust anomaly detections and predictions. The actual data processing and transitions between normal 

operations and operational events are performed in functional units. The TFSM[20] provides a formal framework to 

model satellite operations with satellite telemetry and command data, and a virtual representation with five tuples 

characterizes the data processing in functional units: 

𝑆 = {𝑄, 𝐼, 𝑞0, 𝑂, 𝜆}.                                                                       (6) 

The satellite state 𝑄 = {𝑄𝑑 , 𝑄𝑐} in Eq. 6 is the time-dependent and a collection of discrete, 𝑄𝑑, and continuous, 𝑄𝑐 , 

data models. The symbol 𝑞0 is the initial state. Variable I is the input to the data processing, which includes the 

satellite command and the input for the data process specific to a functional unit. The update function 𝜆 generates 

the next state 𝑄𝑓 and output 𝑂 from an initial state 𝑄𝑖  and input I: 

𝜆: 𝑄𝑖 × 𝐼 → 𝑄𝑓 × 𝑂,                                                                     (7) 

which represents the transition between satellite states. The update function 𝜆 is subsystem-specific, as different 

subsystems have different data processing logic. A satellite in normal operations without operational events or 

anomalies is defined as a default state corresponding to 𝑞0 in the TFSM. Operational events in satellite operations 

are defined as the event states independent from the default state in TFSM. The transitions between the default state 

and states corresponding to operational events are initiated with event triggers 𝐶𝑙 that could be satellite commands. 

The common characteristics of event states are event periods {𝑡𝑖
𝑒, 𝑡𝑓

𝑒} and a signature flag 𝑞𝑗
𝑒(𝑡): 

𝑞𝑗
𝑒(𝑡) = {

1, 𝑡𝑖
𝑒 ≤ 𝑡 < 𝑡𝑓

𝑒

0, 𝑡 < 𝑡𝑖
𝑒𝑜𝑟 𝑡 ≥ 𝑡𝑓

𝑒.                                                          (8) 

The continuous models, 𝑄𝑐 , are time- and state-dependent for data-driven and physics-based models. 

𝑄𝑐 = 𝑓(𝛿𝑡, 𝑞𝑗
𝑒).                                                                        (9) 

The model-based profiles in the TFSM for operational events as 

𝑄𝑒(𝛿𝑡𝑒) = {𝑞𝑙
𝑒 , 𝑓𝑘(𝛿𝑡𝑒 , 𝑞𝑗

𝑒)} ,                                                             (10) 

where 𝛿𝑡𝑒 = 𝑡 − 𝑡𝑖
𝑒,  𝑡𝑖

𝑒 ≤ 𝑡 < 𝑡𝑓
𝑒, and 𝑞𝑙

𝑒 represents a collection of discrete datasets with different values from 

default states. For example, a satellite maneuver event could be defined by the thruster on/off flags for a maneuver 

state, which corresponds to the value 1/0 in Eq. 8. The state 𝑞𝑗
𝑒(𝑡) that defines thruster on/off status is a signature 

flag for a satellite in the maneuver state. The function 𝑓𝑘(𝛿𝑡, 𝑞𝑘
𝑒) can be approximated as 

𝑓𝑘(𝑡, 𝑞𝑘
𝑒) = (1 − 𝑞𝑘

𝑒)𝑓𝑘
𝑑(𝛿𝑡0) + 𝑞𝑘

𝑒𝑓𝑘
𝑒(𝛿𝑡𝑒)                                               (11) 

where 𝛿𝑡0 = 𝑡 − 𝑡0 and 𝑡0 is a reference time for the time-dependent function in default states. The flag 𝑞𝑘
𝑐  is 

defined in Eq. 8. The functions, 𝑓𝑘
𝑑(𝛿𝑡0) and 𝑓𝑘

𝑒(𝛿𝑡𝑒), define the time-dependent functions in the default and event 

states, respectively. Thus, the state profile for a satellite state s can be written as  

𝑄𝑠(𝛿𝑡) = {𝑞𝑙
𝑠, 𝑓𝑘

𝑠(𝛿𝑡𝑠)}                                                                 (12) 

where 𝑞𝑙
𝑠 and 𝑓𝑘

𝑠(𝛿𝑡) are a collection of time-dependent discrete and continuous mnemonics. The state s in Eq. 12 

could be a default state or an event state. For example, the function 𝑓𝑘
𝑒(𝛿𝑡) in an event state for orbit maneuver 

involves the satellite ephemeris mnemonics determined by the satellite orbit dynamics and the mnemonics for 

thermal properties that can be determined with the machine learning approach. 

The transition between a default state and an event state is defined by Eq. 7, and one can simplify Eq. 7 by focusing 

on the changes in states Q only:  

𝜆: {𝑄𝑑 , 𝑓𝑘
𝑑(𝛿𝑡0) } × 𝐶 → {𝑞𝑙

𝑒, 𝑓𝑘
𝑒(𝛿𝑡𝑒)}                                                  (13) 

Variable C is an event trigger, and examples of event triggers are satellite commands part of input I in Eq. 6 or an 

orbital trigger for transitioning to eclipse state for a Geo-synchronous satellite. Since the transition to specific states 

corresponding to operational events in satellite operations is always from the default state {𝑞𝑙
𝑑, 𝑓𝑘

𝑑(𝛿𝑡) } 

corresponding to normal operations. Eq. 13 can be simplified as 

𝜆: 𝐶 → {𝑞𝑙
𝑒, 𝑓𝑘

𝑒(𝛿𝑡)}.                                                                   (14) 
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Figure 4 The time-dependent function 𝒇𝒌
𝒆 (𝜹𝒕) in the yellow shaded area for 

a satellite in the maneuver state and the regular daily pattern 𝒇𝒌
𝒅(𝒕) in the 

default state. 

Figure 5 The Data Training Process in an 

SDT  

Eq. 14 shows that an event state for an operational event in a period {𝑡𝑖
𝑒, 𝑡𝑓

𝑒} can be linked to a particular trigger C at 

the time 𝑡𝑖
𝑒. The time-dependent function 𝑓𝑘

𝑒(𝛿𝑡) for continuous datasets consists of physics-based and data-driven 

models. For example, a satellite maneuver event changes satellite orbital data that requires the physics-based model 

to predict what happens next. At the same time, maneuver events also change the data patterns of temperature 

mnemonics described with data-driven models, which are obtained through data training.   Thus, the update function 

𝜆 in TFSM on satellite states becomes a link table that associates an event trigger C with a satellite state profile 

{𝑞𝑙
𝑒 , 𝑓𝑘

𝑒(𝛿𝑡𝑒)}. The link table in Eq. 14 is essential in an SDT for data monitoring and simulations and equivalent to a 

rule model: if an event trigger C is true, a satellite is in the state {𝑞𝑙
𝑒, 𝑓𝑘

𝑒(𝛿𝑡𝑒)}. It creates situational awareness in 

satellite operations since one can anticipate changes in the satellite telemetry with the incoming event triggers. 

Eq. 14 in an SDT can be implemented as hash tables with the transition trigger C as keys in data monitoring and 

simulations. Although the update function 𝜆 depends on data processing in the specific functional units, the changes 

in satellite states in Eq. 14 can be established in the data training process by correlating changes in discrete and 

continuous datasets with event triggers in the data training process, which will be discussed in the next section.  

Figure 4 shows an example of the time-dependent function 𝑓𝑘(𝑡, 𝑞𝑘
𝑐) in different states for the temperature profile of 

thrusters in GOES satellite. The yellow-

shaded area corresponds to the thruster 

firing period so that the satellite is in a 

maneuver state represented by the time-

dependent function 𝑓𝑘
𝑒(𝛿𝑡), and the non-

shaded area represents the temperature of 

thrusters with a diurnal data pattern 

corresponding to 𝑓𝑘
𝑑(𝑡) in the default 

state. Figure 4 shows that the 

temperatures in the shaded area are 

significantly elevated and regarded as 

data pattern changes from the data model 

𝑓𝑘
𝑑(𝑡) in the default state. It is possible to 

obtain data model, 𝑓𝑘
𝑒(𝛿𝑡),  through the 

data training of the historical data in 

maneuver states. The data pattern in the shaded area of Fig. 4 correlates to data pattern changes in mnemonics of the 

Thermal, GNC, Power, and Propulsion subsystems to form an event profile for the maneuver state in the data 

training process, which can be linked to the satellite command at the same period.  

V.  The Data Training In an SDT 

The objectives of the data training in an SDT are to recalibrate data 

models in satellite states and establish the link between event triggers 

and state profiles defined in Eq. 14. Fig. 5 displays the processes in 

the data training for an SDT. The data training in operational 

environments to recalibrate data models is performed in sessions. The 

incremental data training is implemented so that the data models in 

previous sessions are used as input for the current sessions. This is 

critical in improving the training efficiency since the changes in data 

models in consecutive sessions are very small. The data training for 

different states is performed separately. The initial training is 

performed for the default state, and the data points for operational 

events are treated as outliers since they represent the data pattern 

changes in the default state. The outputs of the data training process 

are the time-dependent function 𝑞𝑙
𝑒(𝑡) for discrete datasets and the 

time-dependent trends {𝑓𝑗
𝑒(𝑡), 𝜎𝑗 } for continuous datasets. The data 

training of discrete datasets is to detect the change value 𝛿𝑗
𝑘(𝑡𝑘) 

defined in Eq. 1, which is a simple search process. Rule models for 

discrete datasets are obtained by correlating the change value 𝛿𝑗
𝑘(𝑡𝑘) 
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in Eq. 1 with event triggers. 

The outliers, {𝑂𝑗(𝑡𝑘)}, are the output of the data training process since the training set for the data training process is 

the actual telemetry data from physical satellites and generally contains outliers that distort the data training 

outcomes. An iterative training procedure is implemented to detect outliers and perform data training in an iterative 

loop, which makes the data training with real telemetry data more robust in operational environments. This shows 

that the recalibration of data models in SDT needs to detect outliers to ensure robust data training outcomes. 

The post-training process correlates outliers within the same period in discrete and continuous datasets into an event 

profile, as operational events or anomalies generally involve outliers in multiple mnemonics in multiple subsystems. 

Changes in discrete datasets can be regarded as outliers in the default state to correlate changes in other datasets. 

The correlation process groups outliers in every mnemonic occurring within the same period into an event profile 

consisting of the composition of mnemonics and their relative strength in data pattern changes. This process has 

been developed and implemented in Ref. 14 and 15, which provides an ML representation for engineering analysis 

in identifying signatures of operational events and anomaly root causes. The event file is correlated with the 

incoming satellite command to establish an entry to the link table defined in Eq. 14, in which time tags of satellite 

commands match the start times of event profiles. Correlations between changes in discrete datasets and event 

triggers establish rule models. The event profile could represent an anomaly if a trigger is not associated with 

operational events. 

The event profile at this stage is in the form of outliers for the continuous datasets, and the state profile with data 

models for operational events defined in Eq. 12 can be obtained from the secondary training with event data and 

corresponding history data. The data models and training algorithms in the secondary training are under 

investigation. 

VI. Data Monitoring and Satellite Simulations in an SDT 

Section 2 shows that data-driven models consist of short-term and long-term time-dependent trends in anomaly 

detections and predictions. Changes in short- and long-term data trends are caused by different anomalies. 

Anomalies exhibit sudden changes in system behavior that cause unexpected short-term data changes, and this type 

of anomaly can only be detected but may not be predicted. Degradations of components or subsystems result in slow 

changes in long-term telemetry data patterns. This type of anomaly cannot be detected in short-term patterns; 

however, they could be predicted through an ML analysis of long-term data trends with anomaly criteria defined by 

engineers, which provides the basis for conditional-based maintenance.  

The data monitoring in real-time or near real-time detects short-term changes to satellite states with state profiles 

defined in Eq. 12.  Because of the data fusion of telemetry data with the satellite command data, the link table 

defined in Eq. 14 can be leveraged in data monitoring to determine satellite states from event triggers C, which 

determines which state profiles used in data monitoring. The data monitoring for an SDT in a satellite state with the 

profile {𝑞𝑙
𝑠, 𝑓𝑘

𝑠(𝛿𝑡)}  compares the discrete values {𝑑𝑖
𝑑(𝑡𝑖)} with the model value {𝑞𝑙

𝑠} and the continuous values 

{𝑑𝑖
𝑐(𝑡𝑖)} with the time-dependent trends, {𝜎𝑗 , 𝑓𝑗

𝑠(𝛿𝑡)}, which follows the relationships 

𝑞𝑗
𝑠(𝑡𝑖) − 𝑑𝑗

𝑑(𝑡𝑖) = 0                                                                  (15) 

for discrete datasets and  

|𝑓𝑗
𝑠(𝛿𝑡) − 𝑑𝑗

𝑐(𝑡𝑖)| < 𝑁𝜎𝑗                                                              (16) 

for continuous datasets. The difference between the data model prediction 𝑓𝑗
𝑠(𝛿𝑡) and the value 𝑑𝑗

𝑐(𝑡𝑖) for a data 

point at 𝑡𝑖 should be less than 𝑁𝜎𝑗 for datasets with the Gaussian probability distributions, which 𝜎𝑗 is the standard 

deviation defined in Eq. 2 and N is a user-defined parameter. A data point with a value that deviates from Eq. 15 for 

discrete datasets and Eq. 16 for continuous datasets is regarded as an outlier, and consecutive outliers change data 

patterns in a satellite state that could be a potential anomaly. The data monitoring in an SDT that monitors satellite 

states with the state profiles {𝑞𝑙
𝑠, 𝑓𝑘

𝑠(𝛿𝑡)} provides anomaly detections in normal operations and operational events. 

An anomaly is an abnormal state with a trigger not associated with known operational events, and the unknown 

trigger is regarded as the root cause of an anomaly. After data monitoring, the engineering analysis process 

correlates data pattern changes in multiple datasets into an event profile. Correlating data pattern changes into event 

profiles is a critical part of an automated engineering analysis to identify the root cause of anomalies and develop 

workaround solutions. 
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Satellite simulations test various operational events in satellite operations triggered by satellite commands from 

ground systems. A satellite command from a ground system in simulations triggers a transition in TFSM from a 

default state to an event state via the update function 𝜆 represented in the link table by Eq. 14 to determine which 

satellite state profile, {𝑞𝑙
𝑒, 𝑓𝑘

𝑒(𝛿𝑡𝑒)}, for generating satellite telemetry and sending them back to ground systems. The 

time-dependent function 𝑓𝑘
𝑒(𝛿𝑡𝑒) consists of physics-based and data-driven models. The physics-based models are 

derived from physics and astronomy and used for orbital and attitude dynamics in GNC subsystems, which are 

critical for simulating satellite maneuvers and momentum adjustments.  Physics-based models are essential to an 

SDT and are generally available in satellite ground systems. The data training process creates and recalibrates the 

data-driven models for a satellite state. The same set of state profiles in the data monitoring are used in satellite 

simulations: the data model monitoring process compares the data value to the model predictions, while the satellite 

simulations generate telemetry data from model predictions. 

VII. Summary 

This paper offers solutions for some of the critical challenges in developing SDTs with innovative technologies, 

which include the hierarchical reference architecture, data training and re-calibrations of the data models, and data 

monitoring and simulations. The hierarchical component reference architecture with components defined at 

subsystem and mnemonic levels addresses scalability, extensibility, and reusability. Satellite datasets are diverse and 

involve rule-based, physics-based, data-driven, and hybrid models. The requirements for data model recalibrations 

in operational environments are efficiency, accuracy, and robustness, as telemetry data in data model recalibrations 

contains outliers that distort training outcomes. The efficiency and accuracy requirements are addressed with the 

flexibility in selecting different models for datasets with different complexity in data patterns and the incremental 

training operation concept. The iterative training of telemetry data in operational environments ensures the 

robustness requirement in data-model recalibrations. The EDT in an SDT expands telemetry databases with data 

training and updating attributes that associate each mnemonic with a specific model that matches the complexity of 

its data patterns, which offers flexibility in data model selections for a mnemonic. The EDT-driven operations in 

SDTs provide scalability and enable rapid deployment into new missions, and it is also essential for efficient data 

training in operational environments. 

The TFSM, with the data fusion of satellite telemetry and satellite commands, provides a framework for data 

monitoring, engineering analysis, and simulations for satellite operations. Operational events in satellite operations 

are independent of normal operations' default state. The link table defines transitions from the default state for 

normal operations to event states for operational events in Eq. 14, in which event triggers, such as satellite 

commands, determine state profiles used for data monitoring and satellite simulations. An anomaly becomes an 

abnormal state in the TFSM with unknown event triggers regarded as the anomaly’s root cause. The data training 

process generates state profiles by correlating data pattern changes in discrete and continuous datasets and the link 

table by associating event triggers with state profiles, which are critical for data monitoring, engineering analysis, 

and simulations. 

While SDTs offer a promising opportunity to improve operation efficiency and mission resilience with model-based 

data monitoring, engineering analysis, conditional-based maintenance, and satellite simulation, SDT development is 

in the early system design and implementation stage, and some challenges remain to be investigated. The secondary 

data training for the data models in operational events is a significant challenge to be investigated, as data points in 

operational events were regarded as outliers in the existing ML approach[13].  Due to a lack of use cases, the 

engineering analysis of long-term trends in conditional-based maintenance has yet to be investigated. Leveraging 

cloud computing for the computationally intensive data training process is critical for SDTs in operational 

environments. The client software with augmented reality technology for displaying satellite orbit and operation 

status is another challenge to be explored.  
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