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Abstract 

The large language model (LLM)-powered AI agent for satellite operations is a ReAct (reason 

and action) agent that senses, reasons, and acts within its environment in a feedback loop. The 

datasets for satellite states come in two forms: log messages, which are formatted strings, and 

telemetry, which consists of time series data. Since telemetry in satellite operations cannot be 

used directly by LLM-powered agents for reasoning, machine learning (ML)-based data 

processing is necessary to model time series data, predict its behavior, detect changes, and 

summarize them for the agent's reasoning and action. An agent fits naturally as a decision support 

component in a satellite digital twin (SDT), where satellite states are modeled and dynamically 

recalibrated. Changes in satellite states are detected through model-based recalibration and 

monitoring, serving as inputs for agents to analyze. Monitoring log messages employs in-context 

learning capabilities to understand transitions in satellite operations as a finite state machine 

(FSM), facilitating the detection of anomalies and providing insights into how and why they occur. 

Retrieval-augmented generation (RAG) is integrated with the ReAct agent to provide satellite 

domain knowledge as the context for the LLM query to reduce hallucinations. An SDT enables 

humans in the feedback loop to review actions and feedback, fostering reinforcement learning 

with human feedback (RLHF) to enhance the agent’s reasoning abilities. The model-based 

simulation in an SDT also offers a testing ground for various agent learning algorithms to improve 

the reasoning capability. The actions of AI agents in satellite operations leverage existing 

components in ground systems by sending requests to activate specific command procedures. 

This approach necessitates AI-centric ground enterprise services with a standard API and message 

format, such as the model-context-protocol (MCP), to facilitate communication between the 

agents and ground system components and ensure comprehensive log message management for 

space and ground assets. AI agents will usher in a new mission operation paradigm that promotes 

more autonomous operations and a unified human ground system interface with a standard set of 

natural language for directing components in ground systems.  
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1 Introduction 

An agent[1] can be defined as an application that seeks to achieve a goal by perceiving its 

environment and acting upon it with the tools at its disposal. The development of AI agents began 

with the development of early computer programs designed to simulate reasoning and decision-

making. The initial agents are the rule-based expert systems. The advent of machine learning in 

the 1990s accelerated the development of AI agents, enabling them to learn from data and adapt 

over time. Recent developments in AI agents powered by large language models (LLMs) offer 

significantly enhanced reasoning, planning, and learning capabilities. These capabilities enable 

highly autonomous decision-making and task execution based on a pre-defined objective, driving 

significant advancements across various domains. AI agents enhance operational efficiency and 

accuracy, lower costs, and facilitate personalized user experiences. Their capacity to learn and 

adapt over time makes them essential tools for driving innovation and achieving strategic goals. 

The agent approach in satellite operations is not new; the rule-based agent [2] was developed 

within the GMSEC framework to facilitate lights-out operations, which has been widely adopted 
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in the industry. It retrieves satellite states from event messages that adhere to the GMSEC [3] 

standard, and command procedures are initiated if these states meet predefined criteria, such as the 

fail-over procedure in the event of a system component failure. The rule-based agent is simplistic, 

as it cannot address complex situations requiring understanding the context of satellite states and 

possessing analytical and reasoning capabilities.  

The LLM-powered AI agents for satellite operations enhance the development of satellite digital 

twins (SDT)[4]. Since satellite operations are dynamic systems involving thousands of time-

dependent datasets, the LLM-powered AI agent cannot use these datasets directly as inputs for 

reasoning and analysis. ML-based data analysis is essential for modeling time-dependent datasets 

and detecting changes, providing the agent with a summary of these changes. An SDT, which 

includes a data analysis component with data models for time-dependent datasets and an LLM-

powered agent for decision support, creates a feedback loop that enables automated data 

monitoring, engineering analysis, and appropriate actions to optimize operations. This has been 

developed in the Advanced Intelligent Monitoring System (AIMS)[5]. The LLM-powered AI 

agent is a crucial component in an SDT for intelligent decision support based on outputs from 

AIMS, the satellite knowledge base, and the reasoning and analytical capabilities of LLMs. The 

AI agent can propose potential solutions to satellite anomalies or take appropriate actions to 

optimize satellite operations. The integration of model-based data analysis and recalibration in 

SDTs with LLM-powered AI agents establishes a feedback loop for dynamic systems that 

optimizes satellite operations based on mission objectives. Satellite operations are open systems 

influenced by external events and command procedures. A finite state machine (FSM) [6] can 

effectively describe an open and dynamic system, providing a framework for formulating the 

transitions among states triggered by either command procedures or external events. The state 

equation in satellite operations establishes the foundation for anomaly detection, model-based 

simulations, and the reasoning and action in a ReAct agent. The context for a command procedure 

and external events includes the initial and final states before and after a command procedure 

and/or an external event. Learning and understanding the context in satellite operations is essential 

for SDT to model telemetry datasets, and reasoning and actions in AI agents. 

Significant challenges exist in developing LLM-powered AI agents within SDTs for satellite 

operations, including cybersecurity requirements, the agents' operation in real-time or near-real-

time environments, and the integration of agents with ground systems. Datasets involved in 

satellite operations must remain secure, preventing the AI agent from communicating with LLM 

models over the open internet. An isolated AI infrastructure within the satellite ground enterprise 

is essential for LLM-powered AI agents on space missions. AI agents for satellite operations 

function in real-time or near-real-time contexts, necessitating very short latency in response time. 

This requirement creates specific software and hardware criteria for the local AI infrastructure. 

Integrating an AI agent with components in ground systems, such as telemetry and control, mission 

planning, and flight dynamics subsystems, in an enterprise ground system architecture is crucial. 

The enterprise ground system architecture, such as the GMSEC reference architecture[3], defines 

interface and message standards to enable agents to monitor all components in ground systems and 

take appropriate actions by sending directive request messages to those components. The research 

and development of the ground system architecture have expanded to include enterprise ground 

system services that encompass mission operations, data processing, and distribution[7]. AI agents 

and AI infrastructure will transform the ground enterprise service into an AI-centric ground 

enterprise service, and the model context protocol (MCP) [8,9] could be the standard for the 

interaction between AI agents and the ground system component, which has been widely adopted.  
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This paper aims to address several key issues in the development of AI agents within the 

framework of SDT, including agent functionalities, architecture, and implementation to meet 

cybersecurity and operational efficiency requirements and to integrate agents into existing ground 

systems. Section 2 illustrates how an AI agent functions as a decision-making component in an 

SDT and how it integrates with components in ground systems. Section 3 discusses the structure 

of ReAct agents in monitoring telemetry data and log messages, as well as the chatbot agent for 

user-agent interfaces. Section 4 describes developing AI agents by leveraging AI libraries and 

other technologies. The summary is presented in Section 5.  

2 SDT with AI Agent in Ground Systems 

 An SDT with LLM-powered AI agents is a crucial 

component of the ground enterprise in space missions. Figure 

1 illustrates the high-level data flow of an SDT within its 

ground system. It utilizes existing elements in the ground 

system to synchronize with its physical satellite and receive 

satellite telemetry, event log messages, and mission planning 

datasets. The datasets for satellite telemetry are time-series 

datasets that cannot serve as inputs for LLM-powered 

reasoning and analysis, necessitating an additional data 

analysis process to detect and examine potential changes in 

the telemetry data and summarize these changes in satellite 

states for the AI agents. AIMS implements the data analysis. 

The AI agent can leverage its satellite knowledge base and 

reasoning capabilities to determine actions based on the 

mission objectives.  

AIMS involves creating and recalibrating models for highly 

diverse telemetry datasets and conducting a post-training analysis to detect changes in these 

datasets. Changes in a telemetry dataset can include data pattern variations defined as outliers or 

increases in the standard deviations of data training outputs. Data pattern changes in a dataset occur 

due to transitions between different states, regarded as events in satellite operations, triggered by 

command procedures or external events, which lead to data pattern changes in telemetry datasets. 

Each event may involve a single dataset or multiple datasets across various subsystems, as there 

are interactions or correlations among subsystems within a satellite. Event representation can link 

data pattern changes in specific datasets with the state equation in the FSM, thereby enabling 

anomaly detection: an event with an unknown trigger is viewed as a potential anomaly. The 

increase in standard deviations may point to a systematic difference between the data model and 

the actual data or an increase in the noise level of datasets, which requires further evaluation. The 

input to the LLM-powered AI agent in an SDT is a summary of satellite events and increases in 

standard deviations.  

Since the number of telemetry datasets ranges from thousands to tens of thousands, managing 

model recalibration is complex due to efficiency, accuracy, and robustness requirements in near-

real-time operational environments. The model recalibration in AIMS must also consider 

scalability and extensibility requirements in its software architecture to enable rapid deployment 

into any mission. Refs. 4 and 5 present detailed discussions on the operational concepts for model 

recalibrations in SDTs and the implementation of a hierarchical component architecture.  

Figure 1. The context diagram of an AI 

Agent in an SDT shows the ground system 

sending telemetry to AIMS and event 

messages to the agent. The agent takes 

actions with a human in the loop. 
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In addition to the telemetry data, the information from a ground system to an SDT includes event 

log messages and mission planning data. Event log messages consist of formatted strings that can 

be used directly as input for LLMs to monitor the health and safety of space and ground assets. The 

emergence of LLMs has led to significant research on system health and safety monitoring[10] via 

event log messages. Monitoring event log messages in AI agents is conducted within the context 

of the state equation of an FSM, enabling the prediction of a final state from a command procedure 

and an initial state. Unexpected changes in satellite states are potential anomalies. This process of 

context learning goes beyond merely monitoring string patterns or searching for keywords in the 

event log messages. Context learning provides actionable information on why and how an anomaly 

occurs. 

The actions of AI agents are transmitted to components in ground systems as directive request 

messages, such as invoking a command procedure in a telemetry and control (T&C) component 

or initiating a mission planning session in a mission planning component. Therefore, integrating 

AI agents into ground systems for space missions necessitates an enterprise architecture with 

standard program interfaces and a message standard. This ensures that all components within the 

ground enterprise are interconnected, facilitating consolidated management of event log messages 

and monitoring by AI agents. An example of an enterprise ground architecture is the 

GMSEC[3,11], which defines the API and message standards between components in a ground 

system and middleware. The AI agents and AI infrastructure in space missions lead to AI-centric 

ground enterprise services, where the MCP can establish the communications between agents and 

ground system components, such as the MCP services for T&C, mission planning, and flight 

dynamics. This enables a close integration of ground system components with AI agents.  

3 AI Agent for Satellite Operations 

The AI agent for satellite operations is a 

ReAct (reason and action) agent[12,13] 

that senses its environment, performs 

reasoning, and takes actions based on 

specific objectives in a feedback loop. 

Figure 2 shows the orchestration of this AI 

agent that incorporates multiple LLM 

nodes, each of which plays a particular 

role as defined by its system message. 

Additionally, each LLM node is linked to 

a short-term memory that records previous queries and provides further context for LLM analysis.  

The agent in Figure 2 has two input data sources: the log messages generated by components in 

both space and ground assets. Using in-context learning, the M-LLM node monitors mission health 

and safety [14]. The log messages are formatted strings containing a time tag, message type, and 

content; some may include a data source specifying the hardware or software. In the context of 

FSM, the log messages generally consist of two essential parts for satellite operations: the 

operational states of mission components and the status of command procedures that trigger state 

transitions in satellite operations. The initial and final operational states provide the context for the 

command procedures. Thus, monitoring log messages requires implementing a sliding window of 

log messages to query the LLM for contextual learning[15]. In the event of an error message, the 

LLM can learn the state information from earlier log messages to understand why and how an 

Figure 2. The architecture of an AI agent for satellite operations. M-

LLM is the LLM used to monitor log messages, and RA-LLM is the 

Reasoning and Action LLM with an RAG architecture. The CP DB 

is the command procedure database for a specific mission. 



Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 21 No. 3, Year 2025 

   

   

5 

error occurred and generate actionable information for the RA-LLM node to reason and take 

appropriate actions. The sliding-window approach is implemented as the short-term memory 

attached to the M-LLM node, which can be configured during actual implementation.  

The RA-LLM nodes in Figure 2 perform reasoning and analysis based on the M-LLM node and 

AIMS outputs, and take appropriate actions based on the command procedure database (CPDB). 

Since knowledge related to satellite operations is generally proprietary and mission-specific, it is 

not included in the input data for LLM training. This leads to a deficiency in domain-specific 

knowledge and updated information about satellites. An RAG approach addresses this gap by 

retrieving specific domain knowledge from the satellite knowledge base as context for the original 

query to the LLM, thus reducing hallucinations. The basic RAG architecture[15] consists of two 

processes: the indexing model, which ingests documents related to satellite operations into an 

embedding store that is shown as the knowledge update routine, and the knowledge retrieval, 

which matches the input query with the information in the embedding store by calculating 

similarity in the vector representations. RAG is a rapidly developing research field[16], featuring 

more advanced techniques to improve retrieval accuracy and efficiency. Numerous options are 

available for embedding models used in document indexing, retrieval, and embedding stores that 

could be implemented as a simple database. One improvement in RAG regarding retrieval 

efficiency and accuracy involves creating two separate embedding stores for space and ground 

segments, as the issues concerning these assets do not correlate in most situations. The retrievals 

from the two embedding stores can be merged for the LLM query.   

The input documents for the satellite knowledge base within the AI Agent include hardware and 

software manuals, user manuals for both space and ground assets, metadata for command 

procedures, a satellite command and telemetry database, and any documents related to satellite 

operations. These documents enable AI agents to troubleshoot anomalies and plan corrective 

actions by invoking the appropriate command procedures or recommending solutions to satellite 

engineers. The knowledge base must adapt to emerging states or issues in satellite operation, with 

manual or automatic updates, ensuring that the AI Agent remains current.  

The RA-LLM nodes perform reasoning tasks for potential anomalies detected in log messages or 

AIMS outputs, using inputs from the satellite knowledge base as context to troubleshoot these 

anomalies, identify root causes, and propose actions to address the problems. Depending on the 

nature of the anomalies, the reasoning process may be complex or straightforward; some could be 

rule-based. One possible solution is to implement the chain of thought (COT)[17], which is defined 

by prompt instructions[18], to enhance reasoning outcomes. The CPDB defines the command 

procedures available in a mission. A command procedure  in satellite operations leads to a state 

transition from an initial state 𝑆𝑖 to the final state 𝑆𝑓, which can be expressed as  

𝜆: 𝑆𝑖 → 𝑆𝑓                                                              (1) 

where the state 𝑆 = {𝑆𝑖
𝑑 , 𝑆𝑗

𝑐}  is a collection of discrete 𝑆𝑖
𝑑  and continuous 𝑆𝑗

𝑐  variables. The 

continuous variable  𝑆𝑗
𝑐 represents a collection of time- and state-dependent datasets that can be 

modeled using machine learning algorithms. Thus, the entries in the CPDB follow a schema with 

the elements {𝑆𝑖 , 𝑛𝑎𝑚𝑒, 𝐴𝑖 , 𝑆𝑓, 𝑐_𝑛𝑎𝑚𝑒}  corresponding to initial state, the procedure name, 

arguments for the procedure, final state, and the component name in a ground system that runs the 

command procedure. The CPDB also represents a set of rules, in which the initial state 𝑆𝑖 
determines the condition for invoking the corresponding procedure. The RA-LLM nodes select 
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command procedures from the CPDB as the action outputs and invoke the tools to send directive 

request messages to the corresponding components in the ground systems. 

The tools provide a review option for engineers to give feedback to RA-LLM nodes before 

executing a command procedure, as such procedures cannot be carried out in operational 

environments without verifying their effectiveness and safety. This is reinforcement learning from 

human feedback (RLHM), since satellite engineers are domain experts in satellite operations with 

well-defined procedures to manage most situations, particularly in legacy missions. The AI agent 

can also utilize the model-based simulation platform in an SDT to test new command procedures 

and implement the agent learning algorithms[19,20] to evaluate their effectiveness and safety. 

 Figure 3 illustrates a chatbot agent 

that provides a standard human-

machine interface for satellite 

operations. The chatbot offers two 

functionalities: answering users’ 

questions about the hardware and 

software of both the space and 

ground segments and invoking 

tools integrated with the LLM node, 

such as executing command 

procedures for components in 

ground systems or directly sending 

commands to the satellite. The 

advantage of the chatbot approach is that it standardizes the human ground system interface using 

a common set of natural languages, regardless of the mission-specific components in the ground 

systems. This enables a seamless transition from one mission to another. The tools may also 

include generating daily, weekly, or monthly reports and displaying the current operational status.   

The structure of the chatbot agent resembles the adaptive RAG[21], where the R-LLM functions 

as a routing classifier for the input query. The T-LLM node invokes the appropriate tools based on 

users’ input and is linked to the command procedure database, which is a specialized RAG 

structure. Since the CPDB contains structured datasets, the indexing process with an embedding 

model is no longer necessary. The C-LLM node is used to answer users’ queries on 

hardware/software questions in both space and ground segments. It has the same RAG structure 

as the RA-LLM nodes in Figure 2.  

4 The AI Agent Development 

There are some system-level requirements for AI agents in satellite operations: 

1. Due to cybersecurity requirements, local AI infrastructure is required for running LLMs, 

which requires both hardware and software. 

2. The real-time or near-real-time operational environments lead to the performance 

requirement for running LLM models. 

3. AI-centric ground enterprise services featuring the API and messaging standard for 

integrating AI agents with ground system components.  

4. Cloud-based application environments that require AI agents to implement a REST 

microservice, since the future ground enterprise service will be cloud-based. 

Figure 3. The chatbot agent for the human-machine interface. The R-LLM 

node is the routing node to forward the user query to either the T-LLM 

node for invoking the tools or the C-LLM for answering users’ questions 

on software/hardware in space and ground segments. The CPDB and 

knowledge base are the same entities as those in the Figure. 2.  
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The local AI infrastructure requires a mini AI data center to operate the LLM inference engine or 

enable the fine-tuning of LLMs with domain-specific knowledge, which also addresses the 

performance requirement of the LLM query. Software platforms like Ollama[22] and 

Xinference[23] enable running LLMs on the local machine. These platforms offer many open-

source LLMs and embedding models for the RAG. 

The technologies for building AI agents have progressed rapidly since the emergence of LLMs, 

with many open-source libraries and development platforms available, including options like 

Langgraph and Langchain[24] in the Python environment, as well as Spring AI[25] and 

Langchain4J [26] in the Java ecosystem. These libraries provide APIs for creating agents with 

LLMs, enabling RAG by binding embedding models and embedding stores with LLMs while 

allowing customization for specifying model inputs and outputs and adding advanced techniques 

to improve RAG performance. There are numerous options for LLMs, embedding models, and 

embedding stores, making a trade study necessary to select the appropriate LLM, embedding 

model, and embedding store based on cost, efficiency, output accuracy, and security requirements. 

An important criterion for choosing an embedding store is its ability to provide a consolidated 

database server for both the embedding database and the CPDB. Furthermore, an AI agent must 

integrate the technology that provides the REST microservice for web applications to address the 

cloud computing requirements for the ground enterprise services. One of the technologies for 

REST microservices is Spring Boot[27], which offers a Java package for implementing the REST 

microservice, facilitating integrations between microservices and an agent. Thus, leveraging these 

libraries and platforms for agent development is crucial for reducing development risks and costs.  

Finally, developing the AI agent using AI code assistance is crucial to speeding up development, 

testing, and documentation. AI code assistance has become more powerful with advanced LLMs; 

using it in software development is no longer optional; it has become a necessity. Agent 

development requires expertise in AI agent development platforms and libraries, REST 

microservices libraries, and prompt engineering. Considerable time would be needed to grasp the 

technologies involved in AI agent development. The extensive knowledge provided by AI code 

assistance allows for creating software routines that integrate these libraries based on users’ 

requirements, thereby significantly enhancing development productivity. Software developers can 

learn these technologies while working with them, supported by AI code assistance.  

5 Conclusion and Summary 

The introduction of AI agents in satellite operations has the potential to usher in a new operational 

paradigm. The AI agent could act as the satellite operator, monitoring the performance of both 

space and ground assets and initiating command procedures when necessary to ensure that these 

assets operate at optimum levels. The AI agent could also function as a satellite engineer, 

overseeing satellite health and safety, troubleshooting anomalies by leveraging its reasoning 

capabilities and satellite knowledge base, and proposing possible workarounds and solutions.  A 

chatbot agent provides a unified human-agent interface. It answers users’ queries and offers tools 

to generate reports and initiate command procedures. This allows for a standard set of mission-

control languages, regardless of mission specifics, significantly simplifying operational 

procedures using natural language without the need to interact with a mission's individual 

components or tools in ground systems.  

The LLM-powered AI agent for satellite operations naturally fits as a decision support component 

in an SDT, where the ML model-based recalibration and monitoring detect changes in time series 
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datasets and provide a summary of these changes to the agents for reasoning, analysis, and 

proposing or taking appropriate actions. The agent implements reinforced learning with human 

feedback (RLHF), allowing engineers in the feedback loop to review the action outputs from the 

agents, ensuring reliability and safety. An SDT offers model-based high-fidelity simulations, 

which create a rich testing ground to verify agent outputs and explore more advanced algorithms 

that enhance agent reasoning capabilities through reinforcement learning.  

AI agents in ground systems lead to an AI-centric ground enterprise service, where the interfaces 

between AI agents and components in ground systems can be defined as MCP services that have 

been widely adopted. The AI-centric ground enterprise service presents new opportunities for 

developing LLM-powered AI agents. In addition to the AI agent for satellite operations, AI agents 

for AI-centric ground enterprise services also include agents for processing and distributing 

payload data and an AI workflow for mission planning, which are outside the scope of the current 

research. Further research on enhancing RAG accuracy and efficiency and improving the agents’ 

reasoning capabilities is in progress.  
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